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It is shown that the rational functions of Higgins and Christov, orthogonal on
[ - CIJ, 00], are Chebyshev polynomials of the first and second kinds with an
algebraic change of variable. Because of these relationships. the existing theory and
algorithms for mapped Chebyshev polynomials also apply to the rational functions:
the Higgins and Christov functions have excellent numerical properties. However
-precisely because of these same connections-it is usually simpler to use the
change of variable rather than write computer programs that employ the Higgins
and Christov functions themselves. Nonetheless, the result is a series of orthogonal
rational functions. For some problems whose solutions decay slowly (algebraically
rather than exponentially with \y\), such as the "Yoshida jet" in oceanography, a
Christov expansion is the only spectral series that converges rapidly. ,~., 1990

Academic Press, Inc.

1. INTRODUCTION

The book by Higgins [I] and the paper by Christov [2] discuss
two interesting basis sets that, in contrast to the familiar orthogonal
polynomials, are rational functions, orthogonal on [-x" W]. Boyd [3 ]
constructed a similar basis set by applying an algebraic map to the
Chebyshev polynomials. This note extends the prior work of Higgins and
Christov by giving convergence theorems and a numerical methodology for
their functions and by showing the relationship between their basis sets and
those of Boyd.

Section 2 establishes the main theorems, which express the connections
between the Higgins and Christov functions, the Chebyshev polynomials,
and the terms of an ordinary Fourier series. Although the theorems are
proved by elementary algebra, previous workers were unaware of them.
Oncc demonstrated, these connections allow one to borrow the existing
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numerical analysis for mapped Chebyshev polynomials and to apply it to
the Higgins and Christov functions with only trivial modifications as
discussed in Sect. 3 and in Boyd [6]. The final section is a summary and
prospectus.

2. RESULTS

We begin with some definitions. Note that what we describe as "Higgins"
functions are given in [I] only in complex form, and that our notation
differs from Christov's.

DEFINITION 1. The "rational Chebyshev functions of the first kind" are
defined by (Boyd [3], but without the notation introduced here

'" .\. c i

where the Tn(x) are the usual Chebyshev polynomials [4]. Note that the
TB,,(Y) are rational functions for n even and rational functions divided by
(l + y2)li2 when n is odd.

DEFINITION 2. The "rational Chebyshev functions of the second kind;'
are

(2 }

where the U,,(x) are the standard Chebyshev polynomials of the second
kind.

Like the TB,,(y), the UB,,(y) are rational functions only when n is even,
i.e., when the function is symmetric about y = O. but in a minor abuse
of terminology, we shall refer to these, for all n, as "rational Chebyshev
functions."

DEFINITION 3. The "Christov functions" are defined by

CC "/(Y) = [.u,,(Y) -,lL,,- l(y)]/2

SC 2n + I(Y) = - [.u,,(y) + .u-n- l(y)]/(2i)

where the "complex Christov functions" .un( y) are

n=O. 1,2, ...

n =0, L 2, ..., (4)

I1n(Y) == (iy -1 )n/(iy + 1)"+! n=O, ± L ±2, .... (5 i

The CC2nCV), like the TB 2n(y) and the UB 2n ( y), are symmetric about
Y = 0; the initial "C' in the symbol was introduced by Christov as 2,
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reminder that these functions are "cosine-like" in the sense of having this
symmetry. Similarly, the SC 2n + 1 are "sine-like" in that they are anti
symmetric about the origin, just like the odd degree rational Chebyshev
functions. In contrast to the latter, however, both the CC 2n and SC 2n + 1

lack a square root factor and are rational functions for all n.

DEFINITION 4. The "Higgins functions" are

CH2nCv) == [AnCv) +L n(y)]/2

SH2n + l(Y) == [An+ l(Y) - L Il _ 1Cv)]/(2i)

where the "complex Higgins functions" are

n = 0,1,2, ...

n = 0, 1,2, ...,

(6)

(7)

n=O, ±1, ±2. (8)

The sine- and cosine-like Higgins functions have not been previously
defined.

To prove Theorem 1 below, we must first establish a lemma which shows
that the Chebyshev functions can be written in a form that mimics the
definitions of the Higgins and Christov functions.

LEMMA 1. The Chebyshev rational functions can be written as the sum or
difference of a pair of complex functions, viz.,

TBnCv) = [O"Il(Y) + 0" _1l(y)]/2 n = 0, 1,2, ..., (9)

where

(Tney) == (iy-l )"/2/(iy + 1)n/2 n = 0, ± 1, ±2, ... ( 10)

and

UBn(y) = [LIl-zCV) - r ll (y)]/2 n = 0, 1,2, ..., (11 )

where

rAy) == (iy - 1 )fl12 + l/(iy + 1)"2 n = 0, ± 1, ± 2, ... (12)

Proof Davis [5, pg. 83] proves that the Chebyshev polynomials have
the representation

(13 )

where [5, pp.19-20] the mapping x=(z+ l/z)/2 has the explicit inverse

(14 )
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The map that transforms T,,(x) -+ TB n ( Y) is

Substituting this map in (14) then shows

z( y) = (y + i)!( 1+ y1)12 = (y + i)11/( Y _ ill".

101
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(16)

It is then trivial to see that (13) is identical with (9) if we use the definitior:
( 10).

The proof of (11) is similar. We begin by using the wen-known identity
[4J

U,,(x) = [l/(n + 1)] dTn + 1(x)/dx n=0,1,2, .... {17 )

By applying this to (13) and then using (14)-(17), we obtain a representa
tion of the UB n ()') identical to (11). Q.E.D,

THEOREM 1. The Christov and Higgins functions are related to the
Chebyshev rational functions as

[Christov]

CC 2,,(y) = [1/(1 + y2)J U 1,,[yi(1 + y1)12J ([8)

SC 2n +, = [1/(1 + y1)J'1 T 2n +,[y!(1 + .,") 12J (l9)

[Higgins]

CH 1nLI') = T 2n Lv/(1 + y2)12J (20)

SH 2n +,(y)= [1/(1 + y2)]12 U2,,+,[y;(l + y 2 11 2J.

Proof Comparison of the identities in Lemma I with Definitions 3 and
4. For example, inspection of (8) and (10) shows that 0'21l(Y):=/'"(Y)'
Comparison of (6) with (9) then establishes (20). The other three pans of
the theorem are proved in exactly the same way. Q.E.D.

It is well known that the Chebyshev polynomials are merely tri
gonometric functions with a change of variable, (liz., T,,(cos t):= cos(nt) and
U,,( cos t) == sin( [n + 1] t )/sin( t). The rational orthogonal functions have
similar equivalents as expressed by the following.

THEOREM 2. With the mapping

y = cot(t) <-+ t = arccos(y)

TB,,(y) = cos(nt) = cos(n arccot[y])

UB I1(y) = sin([n + 1] t)/sin(t)

!22)

(23,1

(241
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CCZ,,(Y) = (cos[2nt] - cos[(2n +2)t])j2

SCz" + [(y) = (sin[(2n + 2) t] - sin[2nt] )/2

CHz,,(Y) = cos(2nt)

SH 21l + [(y) = sin[(2n + 2)t].

(25)

(26)

(27)

(28)

Proof Use of the trigonometric definitions of T,,(x) and U,,(x) plus
Theorem 1.

3. IMPLICATIONS

The close relationship between the Christov and Higgins functions and
the Chebyshev rational functions implies that many good features of the
latter [6] carryover automatically to the former. First, the Christov and
Higgins expansions will have coefficients that decrease exponentially fast
with n for any function f(y) that is analytic along the whole real axis
except at infinity where it has bounded derivatives.

Second, the functions and their derivatives can be computed through
simple recurrences. Christov [2] derives many such formulas for his basis
set, but his method-based on obtaining relations for the complex
functions .u,,(Y) first-is applicable to all the others including the rational
Chebyshev functions. In particular, we note that all four species of basis
functions satisfy the same recurrence,

where {tPm(Y)} is any of TBz", TBzll+[' UBz", UB1"+1> CC 1", SCz,,+[,

CH 1", SH 1" + [ with the appropriate starting values. The reason for (29) is
that the Chebyshev polynomials of both kinds satisfy the same recurrence.
The extra factors of (1 + yl) in the Christov and Higgins functions merely
alter the starting values from those for the TB,,(y) and UB,,(y).

Third, as noted by Christov [2], the derivative of a rational orthogonal
function of any of the classes discussed here is the sum of at most three
basis functions. This implies that when we use Galerkin's method to
convert a differential equation into a matrix problem, the matrix is highly
banded with only a handful of nonzero matrix elements in each row.

Thus, the Higgins and Christov functions are an entirely practical basis
for the numerical solutions of differential equations on J' E [ - 00, 00].

Unfortunately, numerical experience-the examples in [2] and in [6J,
and earlier works of the author-has shown that the most practical way of
using these orthogonal rational functions is to simply change the variable
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from yE [-CIJ,:xi] to tE [0, n] as given by (22). For example, the
parabolic cylinder equation

Uyy + [E- y"]u=O (30)

where E is the eigenvalue becomes

sin6(t) U lt + 2 cos(t) sin 5(t) U I + [E sin"(t) - cos"(t)J u = O. (31,

Instead of deriving many new identities in y as Christov has done, we can
use the familiar trigonometric identities to show that after decoupling the
matrix problem for the symmetric eigenfunctions from that for the anti
symmetric modes, each matrix is heptadiagonal-that is, there are only
seven nonzero elements in each row. Boyd [6] gives a table of the cosine
collocation solution of (31 ).

For functions like sech(y) or exp( -0.5 )'") which decay exponentially
with)' as 1)'1 ~:xi, the differences between the four basis sets are negligible.
Christoy's functions, which themselves decay with 1.1'1 and thus individually
satisfy the boundary condition, would appear to be preferable. However,
(30) is singular at 00. The solution which decays for large !YI is the only
solution which is even bounded at:xi. The numerical results of Boyd [6:1
show that the collocation method automatically converges to this bounded
solution even when an unconstrained set of TB I'()') is used as the expansion.
In the language of Boyd [7], the condition of boundedness at ex; is a
"natural" rather than '"essential" boundary condition, and it is not
necessary to impose it on the individual basis functions.

For solutions which decay algebraically with y, however, it is a different
story. The Chebyshev rational functions give exponential convergence with
n provided the decay is as an even power of y, but inspecting the set
{cos(nt)} and the map y = cot(t) in the limit t --+ 0 (that is, as }' --+ J']}

shows that it is not possible to use the cosines-or even linear combina
tions of the cosines-to match the behavior of a function which decays as
an odd power of y; for example,

fry) == y/( 1+ y") = siu(2t). (321

If we expand this as a cosine series in [-a series of TB" in y-we find that
the coefficients are O( l/n"). The Christov expansion, in contrast, converges
in just one term because (32) is SCI(y)! Christov [2J and Boyd [6] give
physical examples whose solutions fall in this same class: antisymmetric
about the origin with decay as 1/)'. One can show [6J that the coefficients
of the Christov series decrease exponentially with n while those for the
rational Chebyshev expansion are still O(1/n"). Thus, we conclude that
the Chebyshev basis functions are poor for some functions that decay
algebraically with y.

64061 \-8
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However, the machinery of Christov's recursions is still unnecessary: to
expand functions like (32), we can simply change variables and use a sine
series in f. It is easy to invent examples such as g(y) = (1 + y2)1'2 which are
symmetric about the origin and decay as an odd power of Iyl, All four of
the basis sets discussed here fail for this class of functions because all the
sets are equivalent (for a symmetric g(y)) to a cosine series in f, but the
remedy is to simply change variables and use a Fourier sine series.

4. SUMMARY

In this note, we have shown that the orthogonal rational functions of
Higgins and Christov have excellent numerical properties. In particular, if
a functionf(y) decays exponentially as Iyl-+ 00 along the real axis and the
function has no singularities for real y except at infinity, then the terms in
a series of Higgins or Christov functions will decrease exponentially fast
with n. The rational function series may also give exponential convergence
for f(y) which decay algebraically with Iyl or tend to a constant as
IYI -+ 00, provided that fey) has an asymptotic series in l/y of the
appropriate form. Because of their close connection with both sines and
cosines and with the Chebyshev polynomials, it is easy to apply both
Galerkin and pseudospectral methods with the Higgins and Christov
functions, and the former will give banded matrices if the differential
equation has polynomial or rational coefficients.

Boyd [8J shows that one may define similar orthogonal rational
functions for the semi-infinite interval, y E [0, 00]. These functions, denoted
TLn(y), have no direct connection with the basis sets on [- 00, 00 J
discussed here, but have many similar properties including a' simple
connection (via a mapping transformation) with a Fourier cosine series.

The only caveat about orthogonal rational functions is that precisely
because of these same connections with trigonometric functions, it is
usually easier to apply the change of variable (22) and then use the
equivalent Fourier series method than it is to work with the Higgins or
Christov functions explicitly. For this reason, the theorems derived here
have been omitted from the applications-oriented article [6J in favor of
this self-contained treatment.

Nonetheless, this change-of-variable strategy for writing the computer
program does not alter the fact that fey) is approximated by a sum of
rational functions. Boyd [6J shows that for the problem of the so-called
"Yoshida jet" in oceanography, the asymptotic behavior of v(y) (antisym
metric about), = 0 with an asymptotic series in odd powers of l/y) is such
that Hermite series, sinc expansions, and sums of algebraically mapped
Chebyshev polynomials (TBnCv)) all converge very, very slowly (as some
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small inverse power of the number of terms in the series). In contrast, the
Christov expansion is exponentially convergent. Even if the pseudospectral
matrices were created by evaluating trigonometric functions (as was in fac!
the case), the approximation [6J

V= - y(440.8017 + 15.098 )'2+ 1.1412 J.4)/(9+ J2)3, (33)

which has a maximum error of only 0.006 for y E [ - CG, CG 1 is merely the
sum of the first three terms in the Christov series in (y/3). Nothing else
works welL

The conclusion is that even though a programmer need not become an
expert in their properties, the Higgins and Christov functions have a small
but secure place in the numerical toolbox.
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Note added in proof Christov and Bekyarov [9] have successfully applied Christov func·
tions to compute solitary waves of the Korteweg-de Vries and Kuramoto-Sivashmsky
equations. Orthogonal rational functions are also discussed in the new book by the author
[10].
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